
Supplement to
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Pritam Dey, Zhengwu Zhang, and David B. Dunson

This document contain additional material including mathematical results, algorithms and other details to

support the paper ‘Outlier Detection for Multi-Network Data.’ All mathematical notations introduced in

the main paper are also valid for this document.

S1 Mathematical Proofs and Results

Lemma S1.1. (i) Inverse of block matrix: If an n × n symmetric matrix M is partitioned into four

blocks as M =

[
A B

BT C

]
, where A and C are invertible square matrices of arbitrary size and the Schur

complement of C in M (A−BC−1BT ) is invertible, then the inverse of M can be expressed as:

M−1 =

[
A B

BT C

]−1

=

[
(A−BC−1BT )−1 −(A−BC−1BT )−1BC−1

−C−1BT (A−BC−1BT )−1 C−1 + C−1BT (A−BC−1BT )−1BC−1

]
(S1)

(ii) If

(
x1

x2

)
= M−1

(
v1

v2

)
then the following formulas hold:

x1 = (A−BC−1BT )−1(v1 −BC−1v2) (S2)

x2 = C−1(v2 −BTx1) (S3)

Proof. Part (i) is a standard result which can be verified by matrix multiplication of M and M−1 in the given

forms. Part (ii) follows easily from part (i) by explicit multiplication and simple algebraic manipulations.

S1.1 MM algorithm for estimation of (Z, β1, β2, ..., βN)

Concatenating (Z, β1, β2, ..., βN ) into a single parameter vector θ in that order, allows us to calculate the

gradient vector and Hessian matrix:

∇L(Z, {βj}Nj=1) =
1

N



∑N
i=1(ai − πi)

XT (a1 − π1)

XT (a2 − π2)
...

XT (aN − πN )


−



λZ

0

0
...

0


(S4)

H(Z, {βj}Nj=1) = − 1

N


∑N

i=1 Wi WT
1 X . . . WT

NX

XTW1 XTW1X . . . 0
...

...
. . .

...

XTWN 0 . . . XTWNX

− λ


I 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 (S5)

The first matrix in the equation (S5) can be expressed as X̃TWX̃ where W is a diagonal matrix consisting
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of the matrices W1,W2, ...,WN stacked diagonally into a single matrix and

X̃ =


I X 0 . . . 0

I 0 X . . . 0
...

...
...

. . .
...

I 0 0 . . . X

 (S6)

Further we note that every entry in the diagonal matrix W is bounded above by 1
4 . So, the difference

1
4X̃

T X̃−X̃TWX̃ is non-negative definite which gives us the following minorizing function for MM algorithm,

g
(
θ | θ(k)

)
= L

(
θ(k)

)
+∇L

(
θ(k)

)T (
θ − θ(k)

)
+

1

2

(
θ − θ(k)

)T
M
(
θ − θ(k)

)
(S7)

where M is obtained by replacing 1
4X̃

T X̃ in place of X̃TWX̃ in the Hessian matrix. So,

M = − 1

4N



(4λ+ 1)NI X X . . . X

XT XTX 0 . . . 0

XT 0 XTX . . . 0
...

...
...

. . .
...

XT 0 0 . . . XTX


(S8)

The maximizer of g
(
θ | θ(k)

)
is then θ(k+1) = θ(k) −M−1∇L

(
θ(k)

)
which means that using part (ii) of the

lemma, the updates of Z and βi are:

Z(k+1) = Z(k) + 4
[
4λI + I −X(XTX)−1XT

]−1−λZ(k) +
(
I −X(XTX)−1XT

) ∑N
i=1

(
ai − π

(k)
i

)
N

 (S9)

β
(k+1)
i = β

(k)
i + 4(XTX)−1XT

[(
ai − π

(k)
i

)
−N

(
Z(k+1) − Z(k)

)]
(S10)

As we are not updating the whole vector at once, we save a lot of computation with large matrices. The βi’s

are not very large in dimension in general, so the only computation with large matrices that has to be done

in every iteration are the matrix multiplications in the update of Z.

Algorithm 1: MM Algorithm for estimation of (Z, β1, β2, . . . , βN )

Data: Binary adjacency matrices: A1, A2, . . . , AN

Input: Hemisphere and lobe memberships for every ROI in the atlas, λ and a tolerance value for

the stopping condition.

Output: Estimated parameter vectors (Ẑ, β̂1, β̂2, . . . , β̂N )

1 Vectorize the adjacency matrices by taking only the elements below the diagonal to get vectors

{ai}Ni=1.

2 Form the X matrix using the hemisphere and lobe relationships of every pair of ROIs.

3 Calculate the matrices Q = I −X(XTX)−1XT , R = 4(Q+ 4λI)−1 and S = 4(XTX)−1XT .

4 Initialize the parameters k = 0, Z = Z(0), βi = β
(0)
i and evaluate the objective function at the initial

values.

5 while not stopping condition do

6 Calculate
{(

ai − π
(k)
i

)
= ai − logit

(
Z(k) +Xβ

(k)
i

)}N

i=1
and µ(k) =

∑N
i=1

(
ai−π

(k)
i

)
N

7 Update Z: Z(k+1) = Z(k) +R
[
−λZ(k) +Qµ(k)

]
8 Update βi: β

(k+1)
i = β

(k)
i + S

[(
ai − π

(k)
i

)
+N

(
Z(k+1) − Z(k)

)]
∀i

9 Calculate objective function at Z(k+1) and
{
β
(k+1)
i

}N

i=1

10 Set k=k+1

11 return Ẑ = Z(k−1) and
{
β̂i = β

(k−1)
i

}N

i=1
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S1.2 Proof of Proposition 1

The objective function to minimize to estimate the model parameters after excluding the ith unit is given by

L(Ẑ, {β̂j}j ̸=i) =
1

N−1

∑
j ̸=i

∑L
l=1

[
ajlη̂jl − log(1 + eη̂jl)

]
− λ

2

∥∥∥Ẑ∥∥∥2
2
. Using the lemma S1.1, and the gradient

and hessian given in S4 and S5 the first Newton Raphson update in Z starting from Ẑ is:

Z
(1)
−i = Ẑ +

[
λI +

∑
j ̸=i Wj

N − 1
−
∑

j ̸=i B
T
j Q

−1
j Bj

N − 1

]−1

[∑
j ̸=i

(
I −BT

j Q
−1
j XT

)
(aj − π̂j)

(N − 1)
− λẐ

]
(S11)

But since (Ẑ, β̂1, ..., β̂N ) is the pMLE,∇ZL(Ẑ, {β̂j}Nj=1) =
1
N

∑N
i=1(ai−π̂i)−λẐ = 0 and∇βjL(Ẑ, {β̂j}Nj=1) =

1
NXT (aj − π̂j) = 0. So,

1

N − 1

∑
j ̸=i

(
I −BT

j Q
−1
j XT

)
(aj − π̂j)− λẐ =

1

N − 1

∑
j ̸=i

(aj − π̂j)− λẐ

= − 1

N − 1

[
(ai − π̂i)− λẐ

]
(S12)

So, putting all this together, we get

Z
(1)
−i − Ẑ = − 1

N − 1

[
λI +

∑
j ̸=i Wj

N − 1
−
∑

j ̸=i B
T
j Q

−1
j Bj

N − 1

]−1 [
(ai − π̂i)− λẐ

]

= −

λ(N − 1)I +
∑
j ̸=i

Wj −
∑
j ̸=i

BT
j Q

−1
j Bj

−1 [
(ai − π̂i)− λẐ

]
(S13)

S2 Thresholding influence measures for outlier detection

The basic idea is that most of the subjects have very low values for these influence measures. Only a handful

will possibly have high values of these measures.

Figure S1: A plot of the quantiles of IM2(i). Here we plot the pth quantile of the IM2(i) values for p ∈ [0, 1].

As mentioned in section 2 of the paper, the graph remains relatively flat for most of the lower quantiles and

then starts to sharply increase as we get to the higher quantiles. The ’elbow’ of this plot, i.e. the point where

the graph starts increasing sharply can be used as a threshold. This point is shown in red in the graph. It

is found using the ’kneedle’ algorithm (Satopaa et al., 2011).
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S3 Additional description of the regions of interest for the circular

plots

The circular plots in the main document, an example of which is given here have several dots arranged

around a circular region. Each dot represents a region of interest. These dots are colour-coded to represent

which lobe and hemisphere they come from.

Figure S2: An example of the circular plots in the application section in the main document.

Each ROI is indicated by a number which is its position in the Desikan atlas. For one of the ROI’s in each

lobe and hemisphere combination, in addition to the numbers there is also a text in the figure of the form

”X-YY”. Here ”X” is either ”L” or ”R” representing the left and right hemispheres respectively. ”YY” can

be FL, SU, LC, PL, TL or OL. These represent the frontal lobe, insula, limbic lobe, parietal lobe, temporal

lobe and occipital lobe respectively. All other ROIs with the same colour code belongs to the same lobe and

hemisphere as the one with text described here.
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